Invited Speaker

王金成

吉林大学第二医院

Update time:2024-02-26 12:29

王金成教授,主任医师,博士生导师。吉林省医师协会骨科学分会主任委员、中国医师协会骨科学分会常务委员、中国膝关节协会创始委员、吉林省数字医学学会主任委员、吉林省增材制造学会副理事长、中华医学会数字医学分会委员、吉林省医学会数字医学分会主任委员、中国生物材料学会生物材料先进制造分会常务委员、中国医师协会骨科医师分会骨科3D打印专业委员会委员、中国医疗器械行业协会3D打印医疗器械专业委员会专家委员、中国医学装备协会医用增材制造专业委员会专家委员完成3D打印肩关节、半肩关节、腕关节、半腕关节、翻修腕关节、膝关节、完整半骨盆置换、骶骨重建手术、距骨置换等世界首例的手术,相关成果发表第一责任作者SCI 70余篇,获得吉林省科技进步一等奖2项,被国家卫健委授予全国卫生系统先进工作者的光荣称号。

Topic title: 3D打印钛合金植入物修复骨缺损的基础研究和临床应用

Abstract:

大段骨缺损的修复是骨科领域难以解决的重大问题,传统的修复方法存在着患者不能即刻下地,修复时间长,植入物不匹配等缺点。随着 3D 打印技术的发展,可定制化解剖匹配、术后可即刻下地、具有仿生功能性微孔的假体应运而生。本次会议,我们将对我们在3D 打印钛合金植入物修复骨缺损的基础研究和临床应用进展进行总结。基础研究中,我们聚焦于多孔钛合金植入物的力学性能优化和成骨性能的增强。在力学性能优化方面,我们通过探索新材料(β-钛合金Ti-35Nb-7Zr-5Ta)、新结构(仿生竹结构和仿生骨小梁结构)来获得更加轻质高强的效果。在多孔钛合金植入物的骨长入和骨整合方面,我们通过复合载细胞/细胞因子水凝胶的方式,实现成骨相关细胞和细胞因子的局部缓释,其成骨和骨整合效果从细胞实验和动物实验来看都有令人鼓舞的效果。

3D打印钛合金植入物修复骨缺损的临床应用研究聚焦于假体的结构和功能设计。从最开始的解剖仿形,到生物力学优化,再到功能仿生,植入部位从四肢管状骨到骨盆的复杂不规则骨。首先在早期解剖仿形过程中,我们设计了全微孔的胫骨近段植入物并进行了植入,之后我们利用有限元分析结合拓扑优化技术对假体进行力学优化,设计了具有解剖仿形和力学优化的胫骨近端肿瘤重建植入物。在这个过程中,我们发现骨组织能够在微孔内爬行长入,但骨长入深度有限。由此,我们借鉴了建筑学中桁架结构,设计了与骨弹性模量相近、满足力学强度要求、具有充足植骨空间的微孔桁架结构,假体中央桁架内植骨,假体边缘微孔内骨爬行长入,最终形成金属-骨一体的金属骨植入物。除了四肢管状骨的钛合金植入物外,我们还针对骨盆的髋臼严重骨缺损设计了桩-承台系统以支撑髋臼杯,实现了通用且适用范围广泛的髋臼重建。对于骨盆肿瘤需要半骨盆置换的患者,我们设计了组配可调式骨整合半骨盆假体,能够针对患者特异性骨盆形状调整半骨盆假体髋臼方位。


Topic title: Basic research and clinical application of 3D printed microporous truss composite structure implants for repairing large segmental bone defect

Abstract:

Objective: This study aims to develop an implant that mimics bone mechanical properties and enhances the bone regenerative microenvironment to address this issue. By organically integrating biomimetic bone trabecular microstructure with truss spatial design using 3D printing, a novel composite micro-truss implant was created. The microporous structures at both ends facilitate early bone conduction, achieving stable interface connection; meanwhile, the central truss structure provides ample space for grafting, thus improving the bone regenerative microenvironment, leading to the formation of a “living” metallic bone capable of bearing loads alongside viable bone, with functions in bone remodelling and repair.

Materials and methods: 1. By extracting the unique double diagonal structure characteristics from glass sponges found in nature and designing glass sponge structures with varying structural parameter ratios to conduct mechanical tests, a biomimetic glass sponge structure with optimal mechanical performance was created. 2. Designing regular cubic structures alongside biomimetic bone trabecular structures for in vivo implantation experiments to analyze the interface bone integration capabilities of different microporous structures. 3. Combining the glass sponge structure with optimal structural parameters and microporous structures with superior interface bone integration capabilities to design a rabbit femur biomimetic microporous-truss implant, conducting mechanical tests to validate its early mechanical support capacity. 4. Creating a large segmental bone defect model in rabbit femurs for implantation; designing tubular implants with microporous-truss structures for clinical validation.

Results: 1. The compressive and bending resistance performance of the glass sponge structure significantly exceeded that of other structures. 2. MicroCT analysis reveals that micropores with biomimetic bone trabecular structures exhibited optimal bone conduction capability. 3. The microporous truss implant provided excellent support, and no prosthesis fractures were observed six weeks post-surgery. 4. Initial clinical observations indicated that patients could bear weight early and engage in functional exercises.

Conclusion: This study introduces the use of microporous-truss implants for the treatment of large segmental bone defects for the first time. This implant features micro-pore structures at both ends, demonstrating excellent bone conduction ability, and a glass sponge structure in the middle, providing substantial support. The larger pores within the central structure promote bone generation, enhancing the internal osseous microenvironment of the implant. Consequently, the microporous-truss implant possesses excellent bone conduction ability at both ends and a midsection conducive to bone formation, enabling integration with bone, thus achieving a long-term stable connection between metal and bone.




Congress has ended
Important Dates
Conference Dates
March 29-31, 2024
Deadline for Submission of Abstract

December 31, 2023

Still open for submission

Notification of Abstract Acceptance

January 15, 2024

January 25, 2024